September 2, 2022

Mr. Richard Doucette Virginia Department of Environmental Quality Northern Regional Office 13901 Crown Court Woodbridge, Virginia 22193

ECS Project No. 1507-D

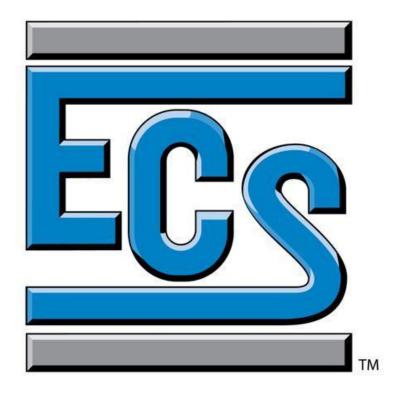
Reference: Annual Groundwater Monitoring Report for year 4 for Fairlington Glen and

Fairlington Meadows Neighborhoods in Arlington, Virginia 22003.

Dear Mr. Doucette:

As specified in the Operations and Maintenance (O&M) Plan prepared in conjunction with the Uniform Environment Covenants Act (UECA) environmental covenant each dated May 18, 2020 administered by the Virginia Department of Environmental Quality (VDEQ), and on behalf of TBR Associates, LLC, ECS Mid-Atlantic, LLC (ECS) has prepared this Groundwater Monitoring Report (GMR) to detail activities completed on June 22 – 24, 2022. This GMR contains analytical results for groundwater samples collected from onsite (near the Fairlington Cleaners) and offsite areas (Fairlington Glen and Fairlington Meadows neighborhoods). If you have any questions or comments regarding this report, or any other aspect of the project, please contact us at (703) 471-8400.

Respectfully submitted,


ECS MID-ATLANTIC, LLC

In the

Jon Horner

Senior Environmental Project Manager

Noel G. Simmons, C.P.G.

ANNUAL GROUNDWATER MONITORING REPORT – YEAR 4 FAIRLINGTON CLEANERS SOLVENT PLUME FAIRLINGTON GLEN AND FAIRLINGTON MEADOWS PLUS ONSITE AREAS ARLINGTON, VIRGINIA

ECS PROJECT NO. 47:1507

FOR

VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY
CASE MANAGER: RICHARD DOUCETTE

SEPTEMBER 2, 2021

ANNUAL GROUNDWATER MONITORING REPORT – YEAR 4 FAIRLINGTON CLEANERS SOLVENT PLUME FAIRLINGTON GLEN AND FAIRLINGTON MEADOWS PLUS ONSITE AREAS ARLINGTON, VIRGINIA

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	II
SECTI	<u>ION</u>	PAGE
1.0	ACTIVITIES COMPLETED THIS PERIOD 1.1 Monitoring Well Survey 1.2 Groundwater Sampling from the Permanent Wells 1.3 SSDS Inspections	1 2 2 3
2.0	PLANNED ACTIVITIES FOR NEXT PERIOD	4
FIGUR	RES	
Figure	1 – Groundwater Results for June 22-27, 2022	
TABLE	ES	
Table 2	1 – Groundwater Gauging Data2 – Summary of Detected Volatile Organic Compounds2 – Historical Summary of Target Solvent Compounds	
APPEI	NDICES	
	dix A – Groundwater Concentration Trend Graphs dix B – Laboratory Reports	

EXECUTIVE SUMMARY

On June 22 to 27, 2022, ECS sampled six monitoring wells surrounding Fairlington Centre and the seven neighborhood monitoring wells previously identified and approved by the Fairlington Glen (the Glen) and Fairlington Meadows (the Meadows) homeowners associations to establish a long-term monitoring network for the chlorinated solvent plume beneath parts of these neighborhoods. This Groundwater Monitoring Report (GMR) contains analytical results for groundwater samples collected from onsite (near the Fairlington Cleaners) and offsite areas (Fairlington Glen and Fairlington Meadows neighborhoods). Groundwater elevations taken from these monitoring wells (Table 1) were used to construct a potentiometric contour map that indicates the typical northwest groundwater flow direction that is consistent with the known shape of the plume determined from the earlier temporary well investigations discussed in the 2018 Site Characterization Report (Figure 1).

Of the seven offsite groundwater samples collected from the new permanent monitoring wells in the Glen and Meadows, the results were as expected (Table 2 and Figure 1). Four of the wells located within the Glen are positioned at the edge of the plume (MW-14, MW-17, MW-18, and MW-19) to track whether the plume was expanding over time. As expected, none of these wells detected any contamination, indicating that the plume is not expanding in the neighborhoods. PCE degradation products, trichloroethane (TCE) cis1,2-dichlorothane (c12DCE) in the core of the plume at Well MW-15 increased slightly (from 24.1 to 24.5 ppb and from 12.6 to 17.7 ppb, respectively). Perimeter wells did not detect any volatile organic compounds (VOCs). These data indicate that continued microbial degradation of the plume is occurring (Table 3).

Nine onsite wells surrounding the Fairlington Cleaners were also targeted for sampling. However, MW-10 could not be located and MW-11 appears to have been damaged collapsed from 6.5 to 14.5 feet. These two wells are located within median of North Quaker Lane and it appears that work in the median may have destroyed these two wells. Well MW-12 could not be sampled during this event due to the presence of parked vehicles that prevented access to the well.

Near the source areas, all of the wells except MW-1 demonstrated continued declining trends in tetrachloroethene (PCE) trends from past years. PCE in MW-1 rose 40.7 ppb to 94.1 ppb. However, these concentrations are within the same order of magnitude as detected previously. PCE degradation products, c12DCE also increased in MW-1 (from 26.2 to 45.4 ppb), TCE increased in MW-7 (from 7.2 to 11.1 ppb), and vinyl chloride (VC) increased in MW-7 (from ND to 6 ppb). These increases in PCE daughter products indicated continued microbial degradation is occurring at the source area.

The available data continues to support previous interpretations of the contaminant plume's location, that is not expanding, that it can be expected to degrade naturally, and ultimately shrink in size. Subslab depressurization systems (SSDSs) were inspected and found to be working properly. ECS will collect another round of groundwater samples from onsite areas and the Glen and Meadows permanent monitoring wells in June 2023.

1.0 ACTIVITIES COMPLETED THIS PERIOD

On behalf of TBR Associates, LP (TBR), ECS Mid-Atlantic, LLC (ECS) has prepared this semi-annual Groundwater Monitoring Report (GWMR) for the Virginia Department of Environmental Quality (VDEQ) to provide the results of the long-term groundwater monitoring program within and near the affected areas of Fairlington Glen (the Glen) and Fairlington Meadows (the Meadows) neighborhoods where the chlorinated solvent plume emanating from Fairlington Cleaners is located. A permanent groundwater monitoring network comprising seven wells was installed to provide ongoing data on the size and position of the chlorinated solvent plume emanating from Fairlington Cleaners on the west side of North Quaker Lane (Figure 1). This GWMR documents the annual groundwater sampling event and sub-slab depressurization system (SSDS) inspections for 2021. Activities included: 1) sampling seven offsite permanent groundwater monitoring wells in the Glen and Meadows neighborhoods, and 2) sampling six onsite monitoring wells surrounding Fairlington Cleaners, and 3) inspection of the subslab depressurization systems (SSDSs) installed in offsite private homes in the Glen neighborhood.

The chlorinated solvent plume below the Glen and Meadows neighborhoods is composed of a class of volatile organic compounds (VOCs) derived from chlorinated solvents. These solvents were released from the drycleaner location at some point over the past several decades. The solvent used to dry clean clothes was tetrachloroethene which is also known as perchloroethene (PCE). The PCE molecule has four chlorine atoms as part of its chemical structure and once in the subsurface is degraded by anaerobic bacteria that gradually strip away the chlorine molecules one at a time to sequentially form trichloroethene (TCE), cis-1,2 dichloroethene (c12DCE), and with only one chlorine molecule left, vinyl chloride. This process of natural attenuation/biodegradation is called reductive dechlorination. After all of the chlorine atoms are stripped off, the remaining core molecule, ethene, has low toxicity.

All the results present in this report are expressed in units of parts per billion (ppb) which are equivalent to the scientific units of the laboratory given in micrograms per liter (ug/L). The laboratory detection limit (the lowest quantity that can be seen by the instrument and analytical method) was 1 ppb. This detection limit is less than the VDEQ health screening levels of 5 ppb for PCE and TCE, and 70 ppb for c12DCE. Essentially, the 1 ppb detection limit indicates that the laboratory's analysis had the necessary resolution required for these data. However, where high concentrations are present, the laboratory may have to dilute a sample in order to properly quantify the compounds (e.g., the sample from well MW-15 had a high PCE concentration (489 ppb) that required a 10-fold dilution). The VDEQ health screening levels evaluate risk from potential use of groundwater for domestic/potable purposes. Although groundwater is not used for these purposes locally, these health

screening levels are routinely used by environmental professionals to gauge the significance of groundwater contamination.

1.1 Monitoring Well Survey

ECS previously contracted surveyors to measure the elevation of the top of the well casings for the newly installed monitoring wells in the Glen and Meadows neighborhoods. The elevations were determined to an accuracy of 0.01 feet. By measuring the depth to the groundwater from the top of the casing and subtracting that value from the casing elevation, the elevation of the ground water table (also known as the potentiometric surface) can be determined (Table 1). Potentiometric surface elevations for the onsite and offsite wells were then used to develop a potentiometric surface contour map (Figure 1). Because groundwater flows from high to low elevation, this map can be used to determine the groundwater flow direction. The groundwater flow direction was determined to be to the northwest, consistent with the shape of the plume that was determined for the Site Characterization Report (Figure 1).

1.2 Groundwater Sampling from the Permanent Wells

Wells were sampled using low-flow pumping (at an approximately ¼ gallon per minute rate) using a peristaltic pump. New Teflon-lined polyethylene tubing was used at each well to collect the sample. All purge water was transported off site for later disposal by RECO Biotechnology. After collection, the groundwater samples were preserved on ice and transported under strict chain of custody procedures to Maryland Spectral Services, a VELAP–certified analytical laboratory for VOC analysis (via EPA method 8260B). Analytical reports from the laboratory are provided in Appendix B.

Table 2 provides the results for volatile organic compounds (VOCs) that were detected, and Figure 1 plots these data on the plume map generated for SCRA3. Concentration trend graphs for each well are included in Appendix A. The first round of data from the permanent wells in the offsite Glen and Meadows neighborhoods that was collected in December 2018 matched the previous PCE contaminant isopleths based on temporary well data very nicely.

Of the seven offsite groundwater samples collected in June 2022 from the permanent monitoring wells in the Glen and Meadows, the results were as expected (Table 2 and Figure 1). Four of the wells located within the Glen are positioned at the edge of the plume (MW-14, MW-17, MW-18, and MW-19) to track whether the plume was expanding over time. As expected, none of these wells detected any contamination, indicating that the plume is not expanding in the neighborhoods. The results for the wells within the plume were similar to previous data and demonstrated steady to declining concentration trends (Table 3,

Appendix A) for all wells and all compounds between December 2018 and June 2022. The slightly elevated concentrations identified in the June 2019 data for MW-15 and MW-16 have declined to concentrations less than the initial December 2018 data (Table 3). PCE degradation products, trichloroethane (TCE) cis1,2-dichlorothane (c12DCE) in the core of the plume at Well MW-15 increased slightly (from 24.1 to 24.5 ppb and from 12.6 to 17.7 ppb, respectively). Perimeter wells did not detect any volatile organic compounds (VOCs). These data indicate that continued microbial degradation of the plume is occurring.

Six onsite wells surrounding the Fairlington Cleaners were also sampled in the June 2022 sampling event. Originally, nine onsite wells surrounding the Fairlington Cleaners were also targeted for sampling. However, MW-10 could not be located and MW-11 appears to have been damaged collapsed from 6.5 to 14.5 feet. These two wells are located within median of North Quaker Lane and it appears that work in the median may have destroyed these two wells. The overall shape of the solvent plume has been well defined by several years of groundwater monitoring events. Because they are not located near the source area nor are they located within the neighborhoods, ECS does not believe that these wells are required to adequately monitor the plume. Well MW-12 could not be sampled during this event due to the presence of parked vehicles that prevented access to the well.

Near the source areas, all of the wells except MW-1 demonstrated continued declining trends in tetrachloroethene (PCE) trends from past years. PCE in MW-1 rose 40.7 ppb to 94.1 ppb. However, these concentrations are within the same order of magnitude as detected previously. PCE degradation products, c12DCE also increased in MW-1 (from 26.2 to 45.4 ppb), TCE increased in MW-7 (from 7.2 to 11.1 ppb), and vinyl chloride (VC) increased in MW-7 (from ND to 6 ppb). These increases in PCE daughter products indicated continued microbial degradation is occurring at the source area.

The available data continues to support previous interpretations of the contaminant plume's location, that the plume is at steady state conditions (is no longer expanding or substantial increasing in concentration) and that the plume can be expected to degrade naturally with time.

1.3 SSDS Inspections

ECS inspected the SSDS units that have been installed in the five homes in Fairlington Glen. All units were found to be in proper working condition.

2.0 PLANNED ACTIVITIES FOR NEXT PERIOD

Another round of annual SSDS inspections and groundwater sample collection from the permanent well network in the onsite areas and offsite Glen and Meadows neighborhoods will occur in June 2023. If declining trends in the neighborhood wells persist, the project operations and Maintenance (O&M) plans calls for a change in groundwater sampling frequency to every three years. Inspections of the SSDS installations will continue to be performed annually.

FIGURES

TABLES

Table 1
Well Gauging Data
Fairlington Dry Cleaners 2022

Well Number	Top of Casing Elevation (ft)	Depth to Water (ft)	Depth to bottom (ft)	Water Column Thickness (ft)	Potentiometric Surface Elevation (ft)
MW-1	199.96	13.29	17.83	4.54	186.67
MW-2B	200.02	13	19.75	6.75	187.02
MW-5B	199.36	12.21	19.6	7.39	187.15
MW-6	199.31	12.6	18.75	6.15	186.71
MW-7	199.58	12.9	22.53	9.63	186.68
MW-8	199.58	12.3	19.4	7.1	187.28
MW-10	198.72	missing	missing	N/A	N/A
MW-11	201.45	dry	6.6*	N/A	N/A
MW-12	199.58	below car	below car	N/A	N/A
MW-13	198.35	12.95	16.22	3.27	185.4
MW-14	191.12	8.82	15.1	6.28	182.3
MW-15	190.37	8.05	17.4	9.35	182.32
MW-16	188.6	12.76	17.05	4.29	175.84
MW-17	190.37	13.9	15.6	1.7	176.47
MW-18	192.56	16.64	17.46	0.82	175.92
MW-19	193.57	11.32	18.05	6.73	182.25

Notes:

Wells gauged from top of casing (TOC)

All wells gauged on June 23, 2022 prior to sampling

* Well appears to have been damaged (formerly 14.55 ft)

N/A - not available

Table 2
Summary Analytical Results for Year 4
June 23 - 27, 2022
Fairlington Cleaners - Alexandria, VA

			Oı	nsite - Fairlin	gton Centre	, Fern Street,	, & North Qu	aker Lane Wel	ls			Offsite -	Fairlington G	ilen & Fairlin	gton Meado	ws Wells	
Target Chlorinated Solvents	VDEQ Tier II	MW-1	MW-2B	MW-5B	MW-6	MW-7	MW-8	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19
	Screening Level	27-Jun-22	23-Jun-22	23-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22	NA	NA	NA	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22
Tetrachloroethene	5	94.1	ND	ND	417	198	438	NS-missing	NS-dry	NA	10.6	ND	334	42.6	ND	ND	ND
Trichloroethene	5	4.6	ND	ND	14	11.1	ND	NS-missing	NS-dry	NA	ND	ND	24.5	2.9	ND	ND	ND
cis-1,2-Dichloroethene	70	45.4	ND	ND	99.8	59.6	23.9	NS-missing	NS-dry	NA	ND	ND	17.7	4	ND	ND	ND
Vinyl chloride	2	ND	ND	ND	ND	6	ND	NS-missing	NS-dry	NA	ND	ND	ND	ND	ND	ND	ND

Other Non-Target VOCs																	
Acetone	1400	ND	ND	20.4	ND	ND	ND	NS-missing	NS-dry	NA	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	81	ND	ND	ND	ND	2	ND	NS-missing	NS-dry	NA	ND	ND	ND	ND	ND	ND	ND
Chloroform	2.2	ND	ND	ND	ND	ND	ND	NS-missing	NS-dry	NA	ND	ND	ND	ND	ND	ND	2.3
Methyl tert-butyl ether (MTBE)	70	ND	ND	ND	ND	ND	ND	NS-missing	NS-dry	NA	ND	ND	5.2	ND	ND	ND	ND

All results in parts per billion (ug/L)

ND = not detected above the laboratory detection limit.

NA = Not available (cars parked over well)

NS = Not sampled (reason)

Screening Level - Virginia Department of Environmental Quality Voluntary Remediation Program Tier II (Residential) Screening Level

RED = above screening level

Increased Concentration from last round (Target VOCs only) =

Decreased Concentration from last round (Target VOCs only) =

Table 3
Historical Sampling Results
2015 to 2022
Fairlington Cleaners - Alexandria, VA

	VDEQ Tier II										Onsite (Fairl	ngton Centr	re) Wells								
Chemical	Screening	MW-1	MW-1	MW-1	MW-1	MW-1	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-5B	MW-5B	MW-5B	MW-5B	MW-5B	MW-6	MW-6	MW-6	MW-6	MW-6
	Level	9-Nov-15	21-Jun-19	10-Jun-20	01-Jul-21	27-Jun-22	9-Nov-15	21-Jun-19	10-Jun-20	30-Jun-21	23-Jun-22	9-Nov-15	21-Jun-19	10-Jun-20	30-Jun-21	23-Jun-22	9-Nov-15	20-Jun-19	09-Jun-20	30-Jun-21	27-Jun-22
Tetrachloroethene	5	2.2 J	83.3	21.4	40.7	94.1	ND	2.6	1.9	ND	ND	ND	ND	2	1	ND	1210	717	396	545	417
Trichloroethene	5	ND	11.6	5.2	4.6	4.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	26.7 J	27.6	17.2	22.5	14
cis-1,2-Dichloroethene	70	86.1	51.8	19.7	26.2	45.4	ND	ND	ND	ND	ND	ND	2.1	ND	ND	ND	143	150	100	130	99.8
Vinyl chloride	2	13.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

	VDEQ Tier II							Onsite	(Fern Street) Wells						
Chemical	Screening	MW-7	MW-7	MW-7	MW-7	MW-7	MW-8	MW-8	MW-8	MW-8	MW-8	MW-12	MW-12	MW-12	MW-12	MW-12
	Level	9-Nov-15	21-Jun-19	09-Jun-20	29-Jun-21	27-Jun-22	9-Nov-15	20-Jun-19	10-Jun-20	30-Jun-21	27-Jun-22	9-Nov-15	24-Jun-19	10-Jun-20	30-Jun-21	NA
Tetrachloroethene	5	2600	252	468	286	198	18600	1210	424	563	438	ND	103	14.2	31.3	NA
Trichloroethene	5	80.6 J	6.8	12.1	7.2	11.1	ND	ND	ND	ND	ND	ND	4	ND	ND	NA
cis-1,2-Dichloroethene	70	293	29.7	73.7	38.5	59.6	ND	60.5	34.2	40.3	23.9	ND	21.4	3.4	9.1	NA
Vinyl chloride	2	ND	ND	ND	ND	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA

	VDEQ Tier II				Onsite (N	Iorth Quake	r Lane Media	an) Wells			
Chemical	Screening	MW-10	MW-10	MW-10	MW-10	MW-10	MW-11	MW-11	MW-11	MW-11	MW-11
	Level	9-Nov-15	24-Jun-19	09-Jun-20	29-Jun-21	NA	9-Nov-15	20-Jun-19	09-Jun-20	29-Jun-21	NA
Tetrachloroethene	5	ND	ND	ND	ND	missing	1950	71	162	120	NS-dry
Trichloroethene	5	ND	ND	ND	ND	missing	ND	2	5.3	4.6	NS-dry
cis-1,2-Dichloroethene	70	ND	ND	ND	ND	missing	ND	8.3	30.5	25.8	NS-dry
Vinyl chloride	2	ND	ND	ND	ND	missing	ND	ND	ND	ND	NS-dry

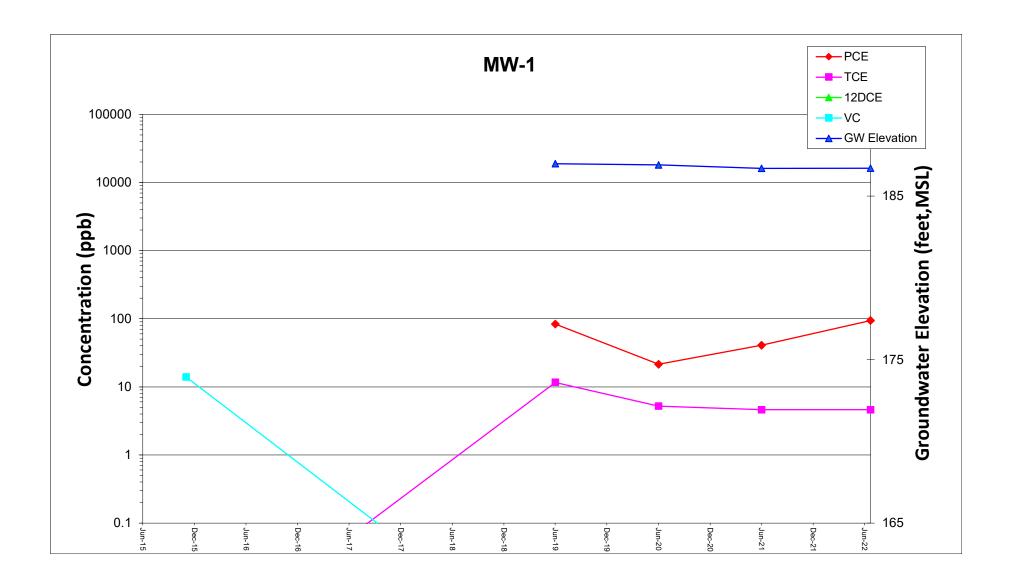
	VDEQ Tier II								Offsite (Fairl	ington Glen	& Fairlingtor	n Meadows)	Wells						
Chemical	Screening	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-15	MW-15	MW-15
	Level	20-Dec-18	19-Jun-19	21-Jan-20	09-Jun-20	29-Jun-21	24-Jun-22	20-Dec-18	19-Jun-19	21-Jan-20	09-Jun-20	29-Jun-21	24-Jun-22	20-Dec-18	20-Jun-19	21-Jan-20	09-Jun-20	29-Jun-21	24-Jun-22
Tetrachloroethene	5	81	60	50.2	38.5	16.6	10.6	ND	ND	1.1	ND	ND	ND	590	601	274	503	489	334
Trichloroethene	5	2.5	ND	1.2	ND	ND	ND	ND	ND	1.2	ND	ND	ND	59.5	29.2	20.4	42.7	24.1	24.5
cis-1,2-Dichloroethene	70	9.8	5.8	5.2	4.3	1.3	ND	ND	ND	1.3	ND	ND	ND	22.1	15	6.9	26.6	12.6	17.7
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							

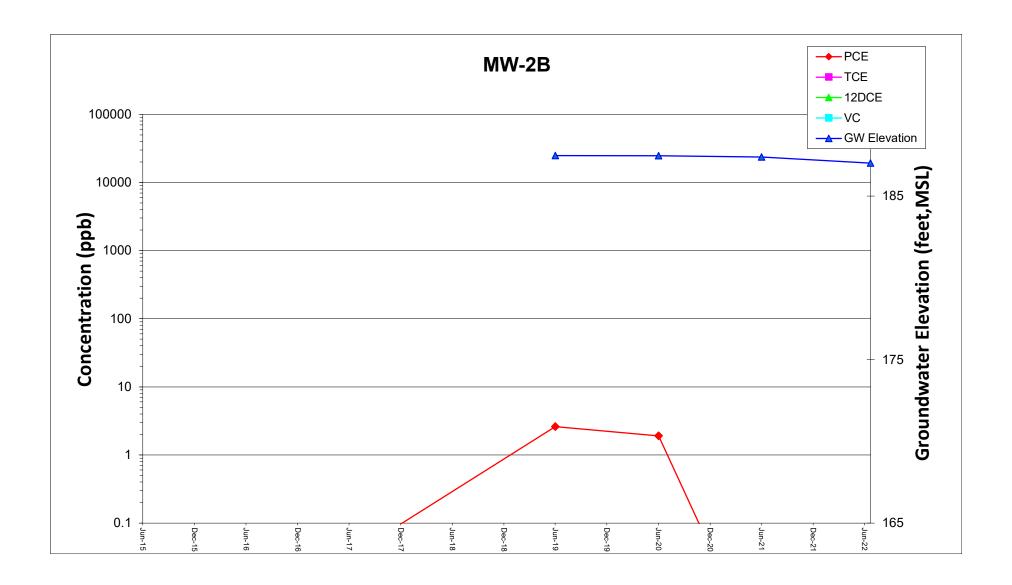
	VDEQ Tier II				Off	site (Fairling	ton Glen & F	airlington M	eadows) We	ells			
Chemical	Screening	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17
	Level	20-Dec-18	19-Jun-19	21-Jan-20	08-Jun-20	01-Jul-21	24-Jun-22	20-Dec-18	19-Jun-19	21-Jan-20	08-Jun-20	01-Jul-21	24-Jun-22
Tetrachloroethene	5	108	75.8	50.2	125	58.2	42.6	ND	ND	ND	ND	ND	ND
Trichloroethene	5	7.2	5.4	3.8	8.3	3.4	2.9	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	70	22.1	6	4.4	10.5	4.5	4	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

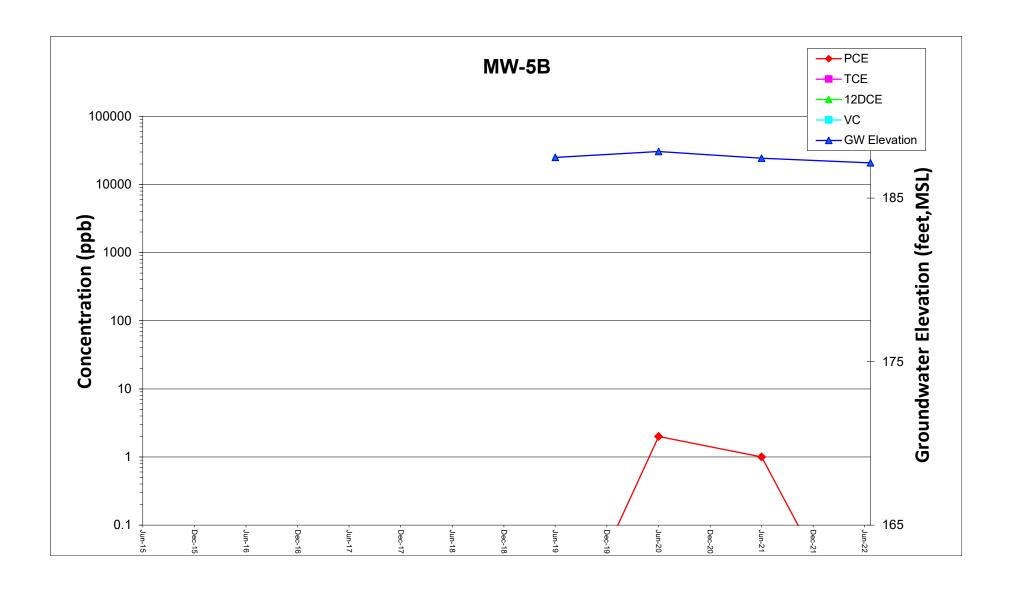
	VDEQ Tier II			Of	fsite (Fairlin	gton Glen &	Fairlington N	/leadows) Pe	rimeter We	lls		
Chemical	Screening	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-19	MW-19	MW-19	MW-19	MW-19
	Level	20-Dec-18	19-Jun-19	21-Jan-20	09-Jun-20	28-Jun-21	24-Jun-22	20-Dec-18	19-Jun-19	21-Jan-20	09-Jun-20	01-Jul-21
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	70	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

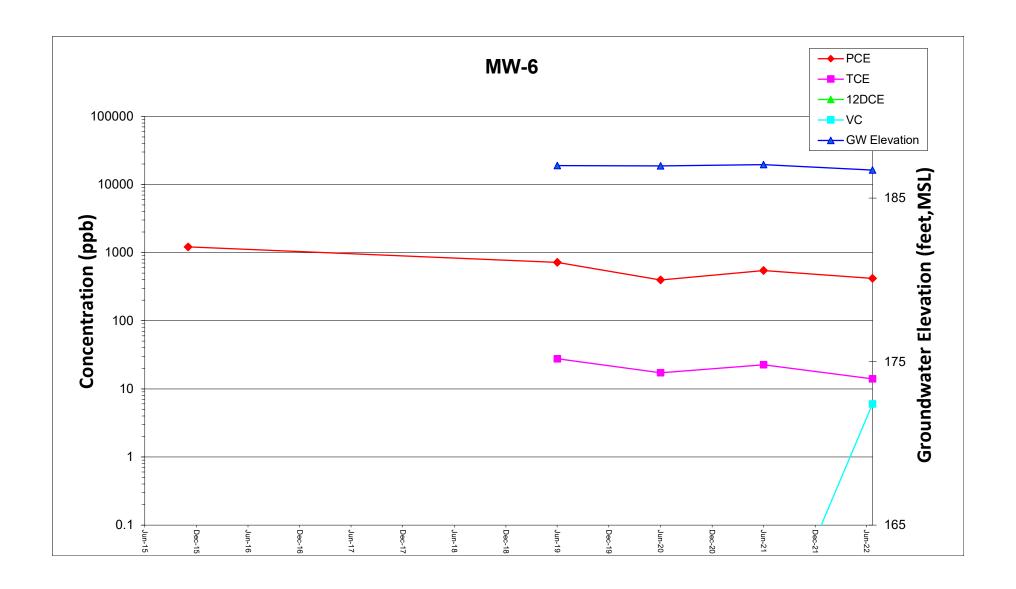
All results in parts per billion (ug/L)

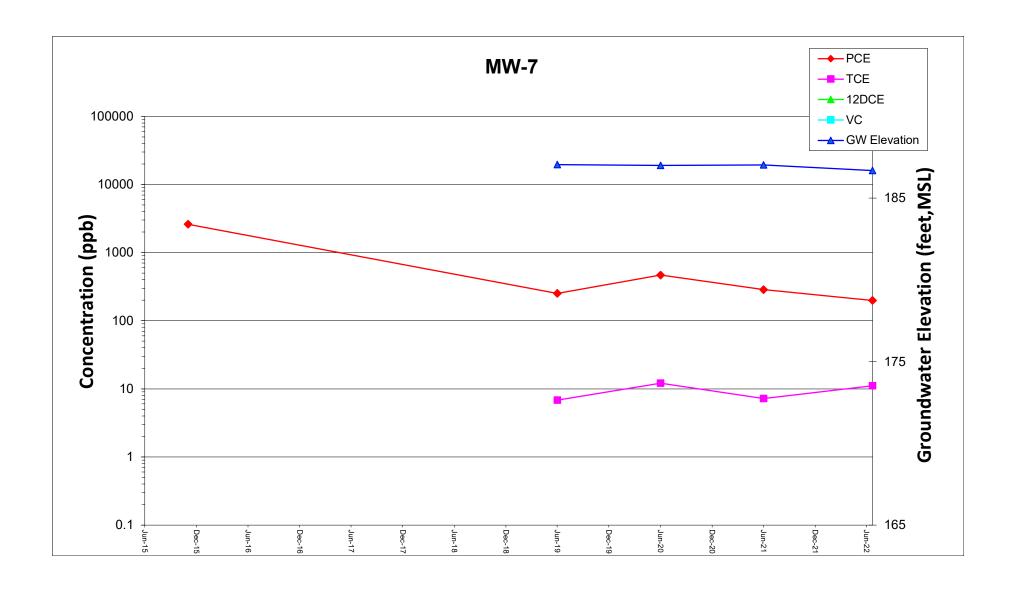
ND = not detected above the laboratory detection limit.

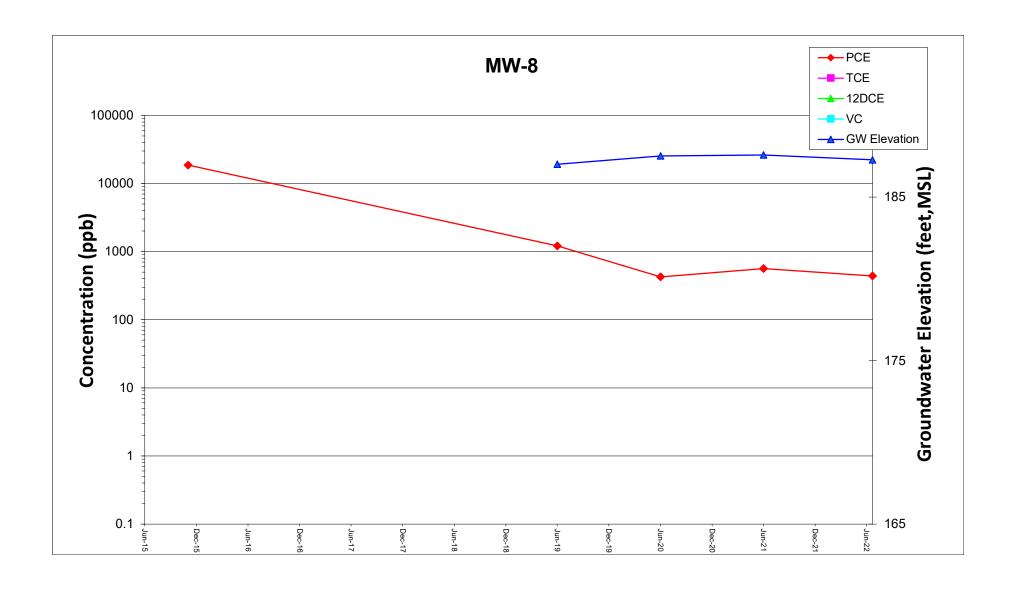

Screening Level - Virginia Department of Environmental Quality Voluntary Remediation Program Tier II (Residential) Screening Level

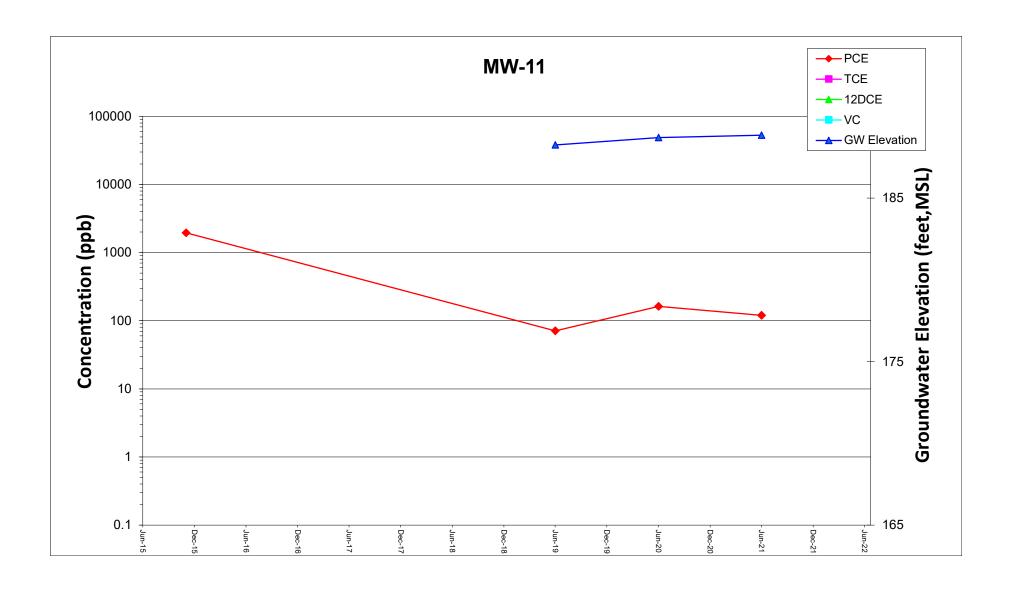

RED = above screening level

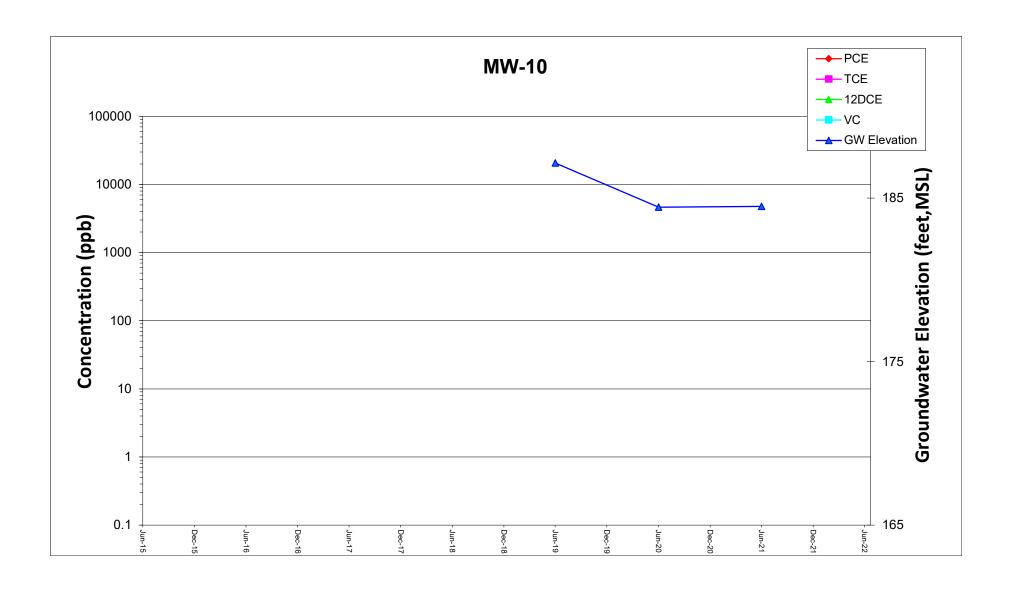

Increased Concentration =

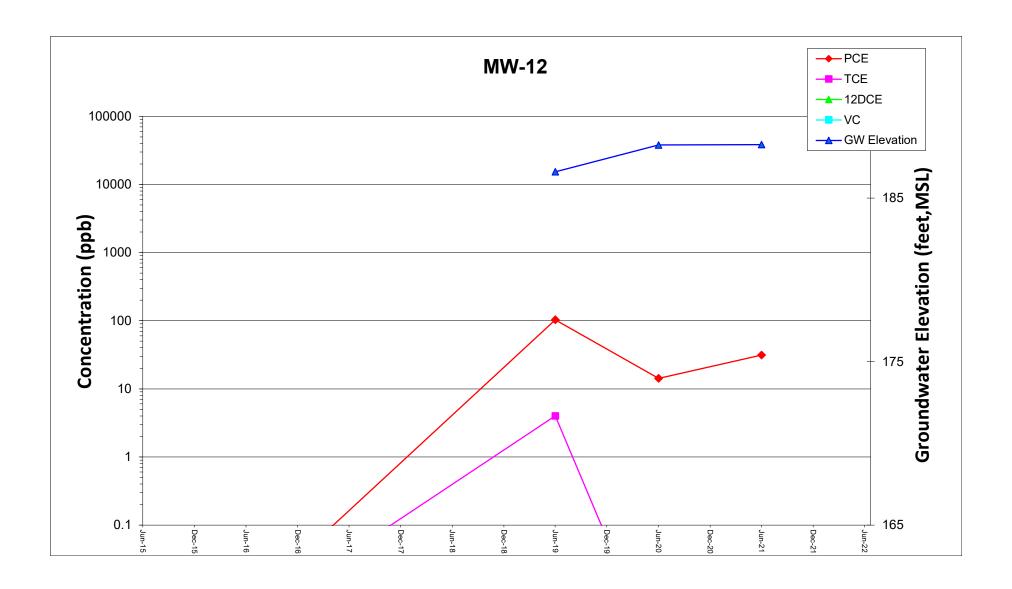

Decreased Concentration =

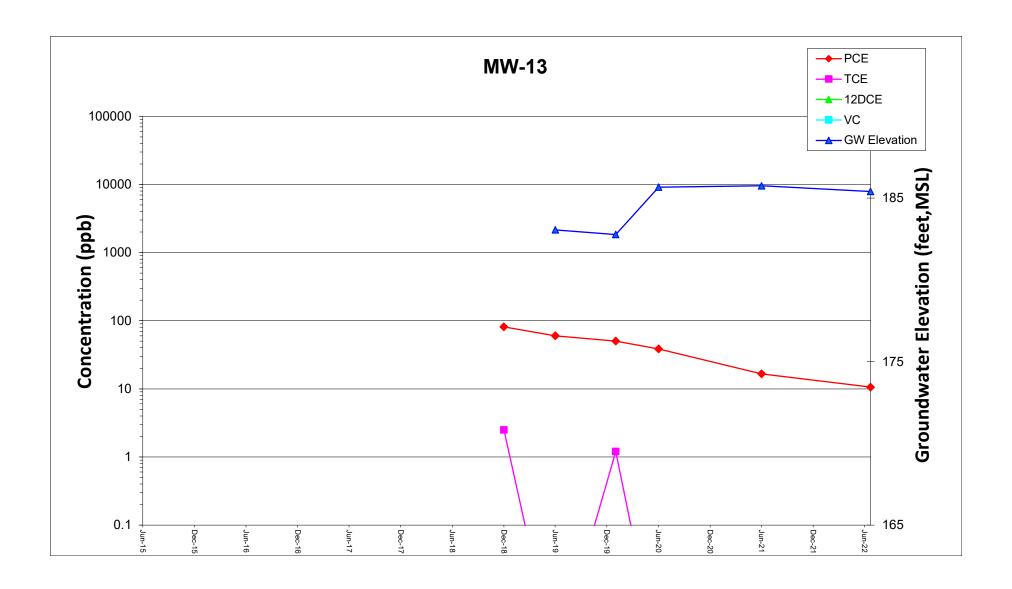

APPENDIX A GROUNDWATER CONCENTRATION TREND GRAPHS

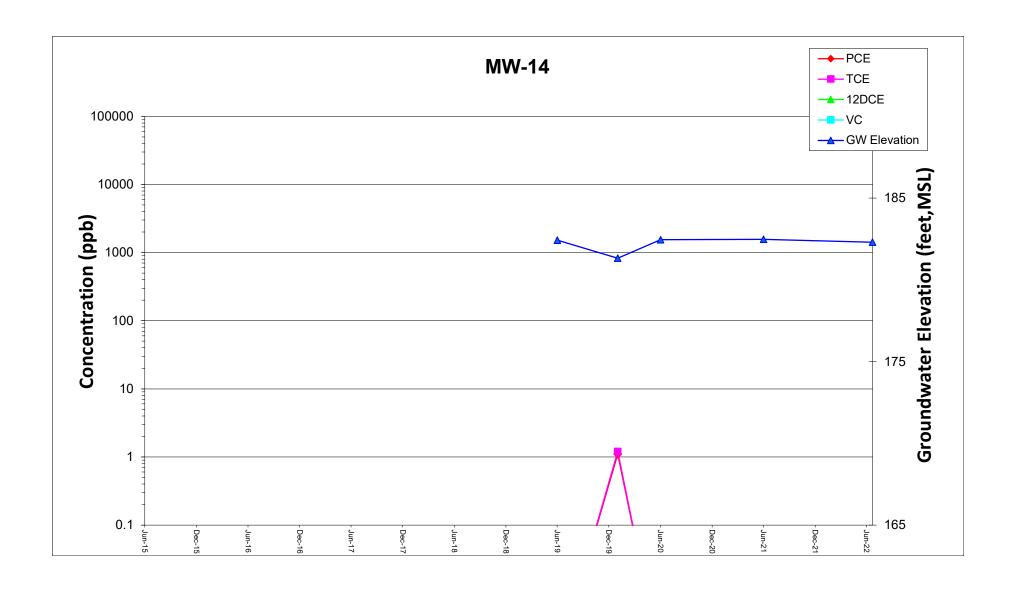


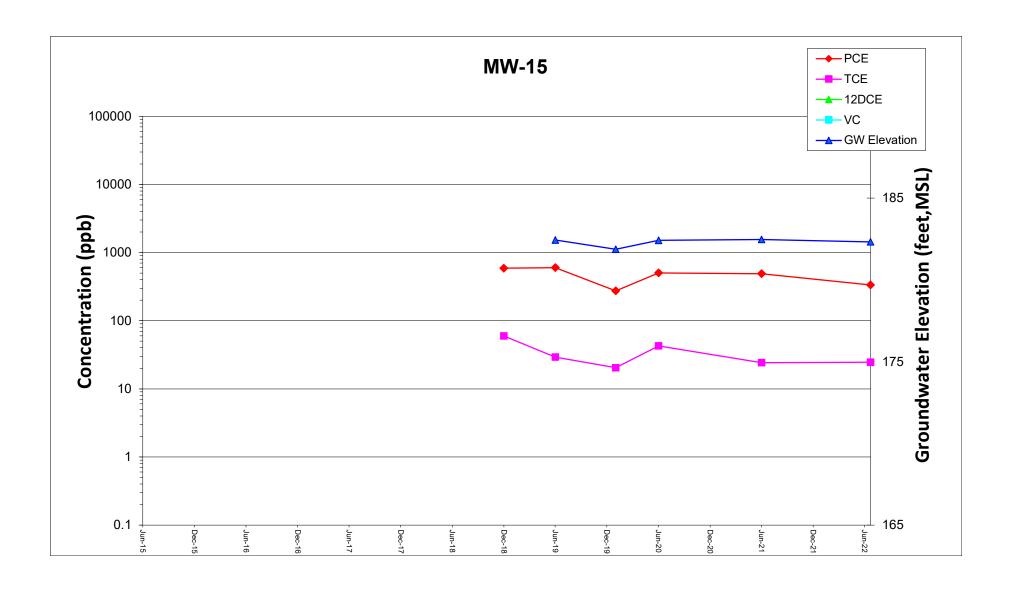


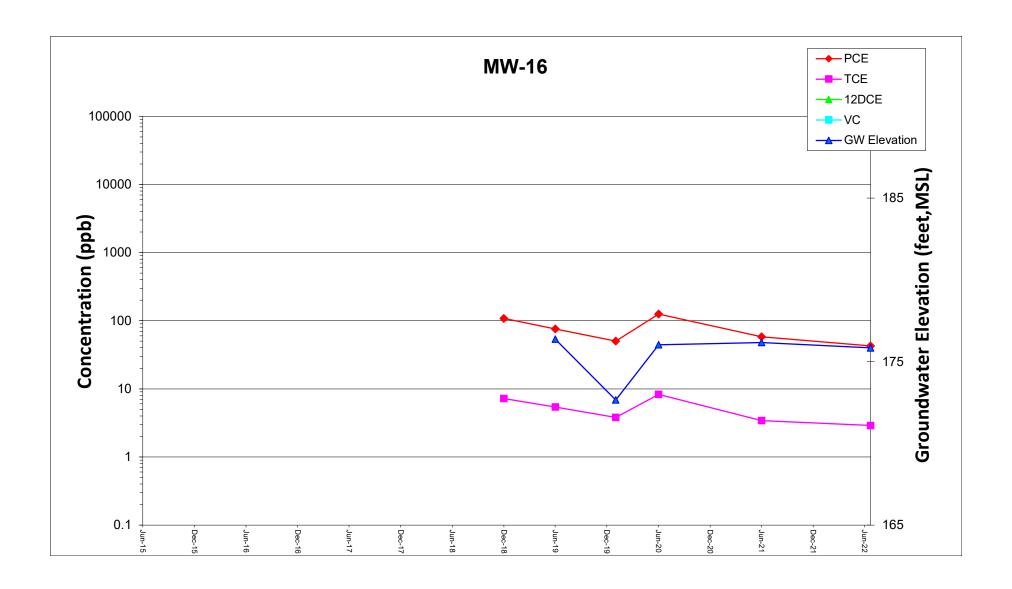


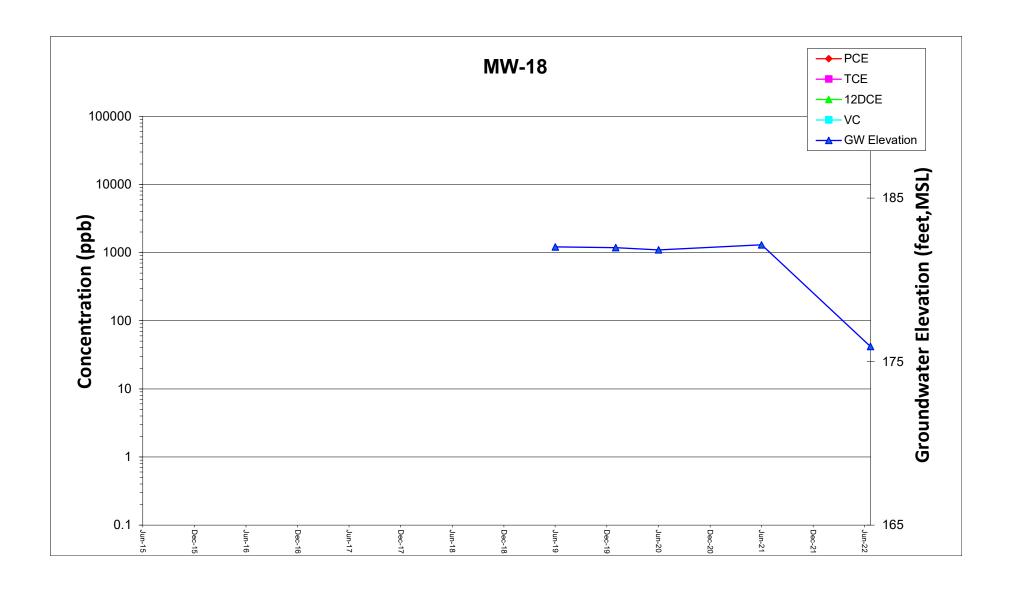


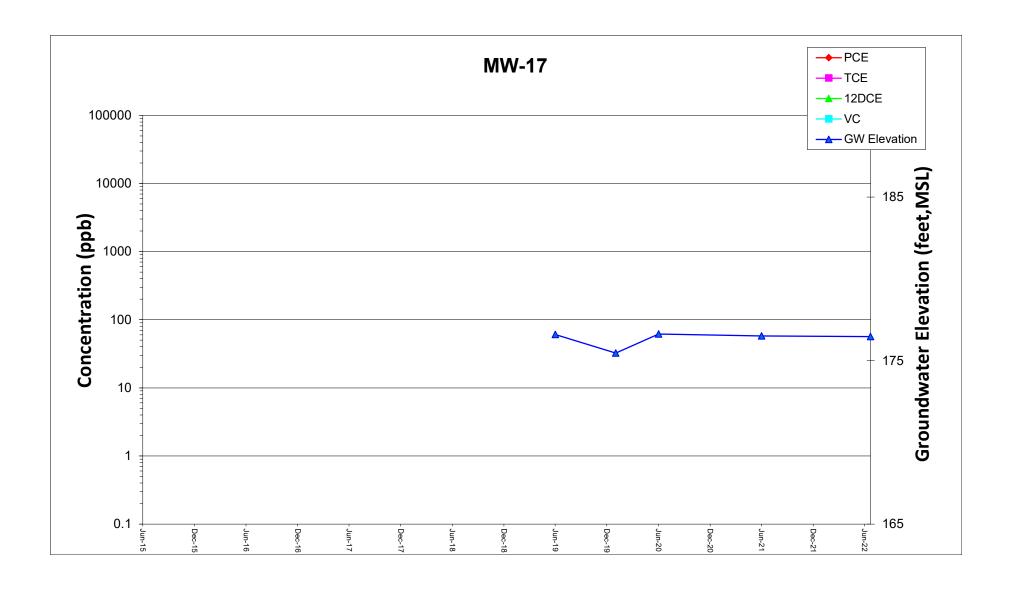


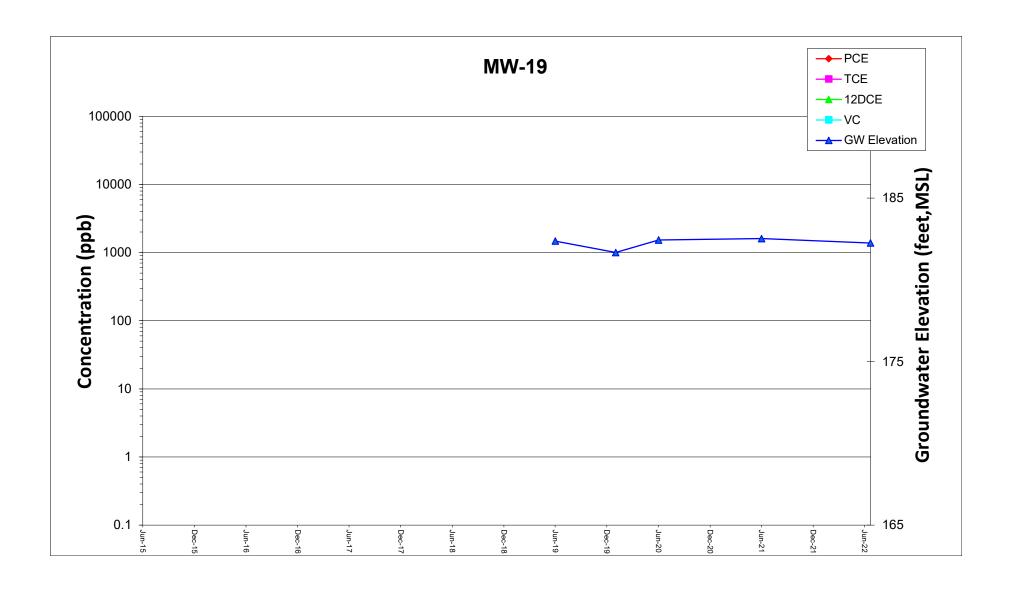












APPENDIX B LABORATORY REPORTS

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

05 July 2022

Josh Cinnamon ECS-Chantilly 14026 Thunderbolt Place, Suite 100 Chantilly, VA 20151

RE: FAIRLINGTON CLEANERS

Enclosed are the results of analyses for samples received by the laboratory on 06/27/22 14:50.

Maryland Spectral Services, Inc. is a TNI 2009 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2009 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2009 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Will Brewington

Ulliburghe

President

nelac =

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Analytical Results

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2B		2062710-01	Nonpotable Water	06/23/22 15:40	06/27/22 14:50
MW-15		2062710-02	Nonpotable Water	06/24/22 12:20	06/27/22 14:50
MW-5B		2062710-03	Nonpotable Water	06/23/22 14:12	06/27/22 14:50
MW-17		2062710-04	Nonpotable Water	06/24/22 08:47	06/27/22 14:50
MW-14		2062710-05	Nonpotable Water	06/24/22 14:55	06/27/22 14:50
MW-13		2062710-06	Nonpotable Water	06/24/22 14:40	06/27/22 14:50
MW-18		2062710-07	Nonpotable Water	06/24/22 10:30	06/27/22 14:50
MW-16		2062710-08	Nonpotable Water	06/24/22 11:08	06/27/22 14:50
MW-19		2062710-09	Nonpotable Water	06/24/22 12:20	06/27/22 14:50

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willistengten

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-2B

2062710-01 (Nonpotable Water) Sample Date: 06/23/22

			Sample Date: 0	0/23/22				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pr	epared by GCMS	-WATER-VOLA	TILES				
Acetone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 15:23	LL
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/28/22	06/28/22 15:23	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Benzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Bromobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Bromoform	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Bromomethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 15:23	LL
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/28/22	06/28/22 15:23	LL
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 15:23	LL
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Chloroethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 15:23	LL
Chloroform	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Chloromethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 15:23	LL
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Dibromomethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-2B

2062710-01 (Nonpotable Water) Sample Date: 06/23/22

			Sample Date: 0	0/23/22				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 15:23	LL
(Sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 15:23	LL
Methylene chloride	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 15:23	LL
Naphthalene	ND	ug/L	2.0	2.0	1	06/28/22	06/28/22 15:23	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Styrene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Toluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Trichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-2B

2062710-01 (Nonpotable Water) Sample Date: 06/23/22

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WATI	ER-VOLATILES (continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
o-Xylene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 15:23	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	110 %	06/28/22	2	06/28/22 15:23		
Surrogate: Toluene-d8		75-120	103 %	06/28/22	2	06/28/22 15:23		
Surrogate: 4-Bromofluorobenzene		75-120	96 %	06/28/22	2	06/28/22 15:23		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millebrighe

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-15

2062710-02 (Nonpotable Water) Sample Date: 06/24/22

			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepared	by GCMS-	WATER-VOLA	TILES				
Acetone	ND	ug/L	50.0	50.0	5	06/28/22	06/28/22 15:47	LL
tert-Amyl alcohol (TAA)	ND	ug/L	100	100	5	06/28/22	06/28/22 15:47	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Benzene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Bromobenzene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Bromochloromethane	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Bromodichloromethane	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Bromoform	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Bromomethane	ND	ug/L	25.0	25.0	5	06/28/22	06/28/22 15:47	LL
tert-Butanol (TBA)	ND	ug/L	75.0	75.0	5	06/28/22	06/28/22 15:47	LL
2-Butanone (MEK)	ND	ug/L	50.0	50.0	5	06/28/22	06/28/22 15:47	LL
n-Butylbenzene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
sec-Butylbenzene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
tert-Butylbenzene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Carbon disulfide	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Carbon tetrachloride	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Chlorobenzene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Chloroethane	ND	ug/L	25.0	25.0	5	06/28/22	06/28/22 15:47	LL
Chloroform	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Chloromethane	ND	ug/L	25.0	25.0	5	06/28/22	06/28/22 15:47	LL
2-Chlorotoluene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
4-Chlorotoluene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Dibromochloromethane	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,2-Dibromo-3-chloropropane	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,2-Dibromoethane (EDB)	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Dibromomethane	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,2-Dichlorobenzene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,3-Dichlorobenzene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,4-Dichlorobenzene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Dichlorodifluoromethane	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,1-Dichloroethane	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,2-Dichloroethane	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,1-Dichloroethene	ND	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-15 2062710-02 (Nonpotable Water) Sample Date: 06/24/22

				Sample Date: 00	3/ 2 4 / 22				
				Reporting	Detection	-			
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GC	MS-WATE	R-VOLATILES (c	ontinued)				
cis-1,2-Dichloroethene	17.7		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
trans-1,2-Dichloroethene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Dichlorofluoromethane	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,2-Dichloropropane	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,3-Dichloropropane	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
2,2-Dichloropropane	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,1-Dichloropropene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
cis-1,3-Dichloropropene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
trans-1,3-Dichloropropene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Diisopropyl ether (DIPE)	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Ethyl tert-butyl ether (ETBE)	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Ethylbenzene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Hexachlorobutadiene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
2-Hexanone	ND		ug/L	50.0	50.0	5	06/28/22	06/28/22 15:47	LL
(Sopropylbenzene (Cumene)	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
4-Isopropyltoluene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Methyl tert-butyl ether (MTBE)	5.2	J	ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
4-Methyl-2-pentanone	ND		ug/L	50.0	50.0	5	06/28/22	06/28/22 15:47	LL
Methylene chloride	ND		ug/L	50.0	50.0	5	06/28/22	06/28/22 15:47	LL
Naphthalene	ND		ug/L	10.0	10.0	5	06/28/22	06/28/22 15:47	LL
n-Propylbenzene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Styrene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,1,1,2-Tetrachloroethane	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,1,2,2-Tetrachloroethane	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Fetrachloroethene	334		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Toluene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,2,3-Trichlorobenzene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,2,4-Trichlorobenzene	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,1,1-Trichloroethane	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,1,2-Trichloroethane	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Frichloroethene	24.5		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Trichlorofluoromethane (Freon 11)	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,2,3-Trichloropropane	ND		ug/L	10.0	5.0	5	06/28/22	06/28/22 15:47	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-15

2062710-02 (Nonpotable Water) Sample Date: 06/24/22

			-					
		-	Reporting	Detection				
Analyte	Result	Notes Unit	s Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WA	TER-VOLATILES	S (continued)				
1,2,4-Trimethylbenzene	ND	ug/I	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
1,3,5-Trimethylbenzene	ND	ug/I	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Vinyl chloride	ND	ug/I	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
o-Xylene	ND	ug/I	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
m- & p-Xylenes	ND	ug/I	10.0	5.0	5	06/28/22	06/28/22 15:47	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	110 %	06/28/	22	06/28/22 15:4	7	
Surrogate: Toluene-d8		75-120	103 %	06/28/	22	06/28/22 15:4	7	
Surrogate: 4-Bromofluorobenzene		75-120	95 %	06/28/	'22	06/28/22 15:4	7	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millebenghe

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-5B

2062710-03 (Nonpotable Water) Sample Date: 06/23/22

Sample Date: 06/25/22									
			Reporting	Detection					
Analyte	Result No		Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst	
Volatile Organics by EPA 8260B	(GC/MS) Prepa	red by GCMS-	WATER-VOLA	<u> FILES</u>					
Acetone	20.4	ug/L	10.0	10.0	1	06/28/22	06/28/22 16:12	LL	
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/28/22	06/28/22 16:12	LL	
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Benzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Bromobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Bromoform	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Bromomethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 16:12	LL	
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/28/22	06/28/22 16:12	LL	
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 16:12	LL	
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
tert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Chloroethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 16:12	LL	
Chloroform	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Chloromethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 16:12	LL	
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Dibromomethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
1,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
1,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
1,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willessey

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-5B

2062710-03 (Nonpotable Water) Sample Date: 06/23/22

			Sample Date: 0	0/23/22				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 16:12	LL
sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 16:12	LL
Methylene chloride	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 16:12	LL
Naphthalene	ND	ug/L	2.0	2.0	1	06/28/22	06/28/22 16:12	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Styrene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Toluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Trichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterender

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-5B

2062710-03 (Nonpotable Water) Sample Date: 06/23/22

			•					
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WAT	ER-VOLATILES ((continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
o-Xylene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:12	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	111 %	06/28/2	2	06/28/22 16:12	?	
Surrogate: Toluene-d8		75-120	103 %	06/28/2.	2	06/28/22 16:12	?	
Surrogate: 4-Bromofluorobenzene		75-120	94 %	06/28/2.	2	06/28/22 16:12	?	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Bright

1500 Caton Center Dr Suite G Baltimore MD 21227

410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-17

2062710-04 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date. 0	0/2-1/22				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pro	epared by GCMS-	WATER-VOLA	<u> FILES</u>				
Acetone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 16:36	LL
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/28/22	06/28/22 16:36	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Benzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Bromobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Bromoform	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Bromomethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 16:36	LL
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/28/22	06/28/22 16:36	LL
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 16:36	LL
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
tert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Chloroethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 16:36	LL
Chloroform	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Chloromethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 16:36	LL
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Dibromomethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-17 2062710-04 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date. 0	0/23/22				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (c	ontinued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 16:36	LL
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 16:36	LL
Methylene chloride	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 16:36	LL
Naphthalene	ND	ug/L	2.0	2.0	1	06/28/22	06/28/22 16:36	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Styrene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Toluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Trichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1 1		5						

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willesseyle

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-17

2062710-04 (Nonpotable Water) Sample Date: 06/24/22

			-					
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WA	TER-VOLATILES	S (continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
o-Xylene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 16:36	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	111 %	06/28/	/22	06/28/22 16:30	5	
Surrogate: Toluene-d8		75-120	103 %	06/28/	/22	06/28/22 16:30	5	
Surrogate: 4-Bromofluorobenzene		75-120	94 %	06/28/	/22	06/28/22 16:30	5	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millesente

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-14 2062710-05 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date: 0	U/ Z-7/ Z Z				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pr	epared by GCMS	-WATER-VOLA	TILES				
Acetone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 17:01	LL
ert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/28/22	06/28/22 17:01	LL
ert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Benzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Bromobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Bromoform	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Bromomethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 17:01	LL
ert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/28/22	06/28/22 17:01	LL
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 17:01	LL
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
ec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Chloroethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 17:01	LL
Chloroform	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Chloromethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 17:01	LL
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Dibromomethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willesseyle

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-14 2062710-05 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date. 0	0/21/22				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepare	ed by GCMS-WATE	R-VOLATILES (c	continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 17:01	LL
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 17:01	LL
Methylene chloride	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 17:01	LL
Naphthalene	ND	ug/L	2.0	2.0	1	06/28/22	06/28/22 17:01	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Styrene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Toluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Trichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1		-						

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-14

2062710-05 (Nonpotable Water) Sample Date: 06/24/22

			-					
			Reporting	Detection			-	
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WAT	ER-VOLATILES	(continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
o-Xylene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:01	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	111 %	06/28/2	2	06/28/22 17:01	!	
Surrogate: Toluene-d8		75-120	103 %	06/28/2.	2	06/28/22 17:01	!	
Surrogate: 4-Bromofluorobenzene		75-120	96 %	06/28/2.	2	06/28/22 17:01	!	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willistengten

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-13

2062710-06 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date: 0	0/24/22				
			Reporting	Detection				
Analyte	Result 1	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prep	pared by GCMS-	WATER-VOLA	FILES				
Acetone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 17:25	LL
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/28/22	06/28/22 17:25	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Benzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Bromobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Bromoform	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Bromomethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 17:25	LL
ert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/28/22	06/28/22 17:25	LL
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 17:25	LL
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
ec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Chloroethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 17:25	LL
Chloroform	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Chloromethane	ND	ug/L	5.0	5.0	1	06/28/22	06/28/22 17:25	LL
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Dibromomethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterester

e nelao :

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-13 2062710-06 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date. 0	0/2-1/22				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (c	continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 17:25	LL
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 17:25	LL
Methylene chloride	ND	ug/L	10.0	10.0	1	06/28/22	06/28/22 17:25	LL
Naphthalene	ND	ug/L	2.0	2.0	1	06/28/22	06/28/22 17:25	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Styrene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Tetrachloroethene	10.6	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Toluene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Trichloroethene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-13

2062710-06 (Nonpotable Water) Sample Date: 06/24/22

			-					
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WAT	ER-VOLATILES ((continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
o-Xylene	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/28/22	06/28/22 17:25	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	111 %	06/28/2	2	06/28/22 17:25	5	
Surrogate: Toluene-d8		75-120	102 %	06/28/2.	2	06/28/22 17:25	5	
Surrogate: 4-Bromofluorobenzene		75-120	95 %	06/28/2.	2	06/28/22 17:25	5	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600

www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-18

2062710-07 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date. 0	0/21/22				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pro	epared by GCMS-	WATER-VOLA	<u> FILES</u>				
Acetone	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:09	LL
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/29/22	06/29/22 16:09	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Benzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Bromobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Bromoform	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Bromomethane	ND	ug/L	5.0	5.0	1	06/29/22	06/29/22 16:09	LL
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/29/22	06/29/22 16:09	LL
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:09	LL
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
tert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Chloroethane	ND	ug/L	5.0	5.0	1	06/29/22	06/29/22 16:09	LL
Chloroform	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Chloromethane	ND	ug/L	5.0	5.0	1	06/29/22	06/29/22 16:09	LL
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Dibromomethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
1,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
1,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
1,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
•		e e						

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-18

2062710-07 (Nonpotable Water) Sample Date: 06/24/22

Sample Date: 06/24/22									
			Reporting	Detection					
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst	
Volatile Organics by EPA 8260B (GC/		•	`						
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
2-Hexanone	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:09	LL	
sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
1-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:09	LL	
Methylene chloride	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:09	LL	
Naphthalene	ND	ug/L	2.0	2.0	1	06/29/22	06/29/22 16:09	LL	
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Styrene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Toluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Frichloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterender

enelo

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-18

2062710-07 (Nonpotable Water) Sample Date: 06/24/22

Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared Analyzed Analyzed				_					
Volatile Organics by EPA 8260B (GC/MS) Prepared by GCMS-WATER-VOLATILES (continued) 1,2,4-Trimethylbenzene ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 1,3,5-Trimethylbenzene ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 Vinyl chloride ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 o-Xylene ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 m- & p-Xylenes ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 Surrogate: 1,2-Dichloroethane-d4 70-130 110 % 06/29/22 06/29/22 16:09 Surrogate: Toluene-d8 75-120 103 % 06/29/22 06/29/22 16:09				Reporting	Detection				
1,2,4-Trimethylbenzene ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 1,3,5-Trimethylbenzene ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 Vinyl chloride ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 o-Xylene ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 m- & p-Xylenes ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 Surrogate: 1,2-Dichloroethane-d4 70-130 110 % 06/29/22 06/29/22 16:09 Surrogate: Toluene-d8 75-120 103 % 06/29/22 06/29/22 16:09	Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
1,3,5-Trimethylbenzene ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 Vinyl chloride ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 o-Xylene ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 m- & p-Xylenes ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 Surrogate: 1,2-Dichloroethane-d4 70-130 110 % 06/29/22 06/29/22 16:09 Surrogate: Toluene-d8 75-120 103 % 06/29/22 06/29/22 16:09	Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WATE	R-VOLATILES (continued)				
Vinyl chloride ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 o-Xylene ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 m- & p-Xylenes ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 Surrogate: 1,2-Dichloroethane-d4 70-130 110 % 06/29/22 06/29/22 16:09 Surrogate: Toluene-d8 75-120 103 % 06/29/22 06/29/22 16:09	1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
o-Xylene ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 m- & p-Xylenes ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 Surrogate: 1,2-Dichloroethane-d4 70-130 110 % 06/29/22 06/29/22 16:09 Surrogate: Toluene-d8 75-120 103 % 06/29/22 06/29/22 16:09	1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
m- & p-Xylenes ND ug/L 2.0 1.0 1 06/29/22 06/29/22 16:09 Surrogate: 1,2-Dichloroethane-d4 70-130 110 % 06/29/22 06/29/22 16:09 Surrogate: Toluene-d8 75-120 103 % 06/29/22 06/29/22 16:09	Vinyl chloride	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Surrogate: Toluene-d8 70-130 110 % 06/29/22 06/29/22 16:09 Surrogate: Toluene-d8 75-120 103 % 06/29/22 06/29/22 16:09	o-Xylene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
Surrogate: Toluene-d8 75-120 103 % 06/29/22 06/29/22 16:09	m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:09	LL
10070	Surrogate: 1,2-Dichloroethane-d4		70-130	110 %	06/29/2.	2	06/29/22 16:09		
Surrogate: 4-Bromofluorobenzene 75-120 94 % 06/29/22 06/29/22 16:09	Surrogate: Toluene-d8		75-120	103 %	06/29/2	2	06/29/22 16:09		
	Surrogate: 4-Bromofluorobenzene		75-120	94 %	06/29/2	2	06/29/22 16:09		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-16

2062710-08 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date: 0	6/24/22				
Analyte	Result Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B ((GC/MS) Prepared b	y GCMS-	WATER-VOLAT	ΓILES				
Acetone	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:33	LL
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/29/22	06/29/22 16:33	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Benzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Bromobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Bromoform	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Bromomethane	ND	ug/L	5.0	5.0	1	06/29/22	06/29/22 16:33	LL
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/29/22	06/29/22 16:33	LL
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:33	LL
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
ec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Chloroethane	ND	ug/L	5.0	5.0	1	06/29/22	06/29/22 16:33	LL
Chloroform	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Chloromethane	ND	ug/L	5.0	5.0	1	06/29/22	06/29/22 16:33	LL
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Dibromomethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Whiterender

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-16

2062710-08 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date: 0	U/ 24/ 22				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepare	ed by GCMS-WATE	R-VOLATILES (c	continued)				
cis-1,2-Dichloroethene	4.0	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
rans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
rans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:33	LL
sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
l-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:33	LL
Methylene chloride	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:33	LL
Naphthalene	ND	ug/L	2.0	2.0	1	06/29/22	06/29/22 16:33	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Styrene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Tetrachloroethene	42.6	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Toluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Frichloroethene	2.9	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Frichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:33	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

nelao i

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-16

2062710-08 (Nonpotable Water) Sample Date: 06/24/22

			-					
			Reporting	Detection				
Analyte	Result	Notes Unit	s Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WA	TER-VOLATILES	S (continued)				
1,2,4-Trimethylbenzene	ND	ug/I	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
1,3,5-Trimethylbenzene	ND	ug/I	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Vinyl chloride	ND	ug/I	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
o-Xylene	ND	ug/I	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
m- & p-Xylenes	ND	ug/I	2.0	1.0	1	06/29/22	06/29/22 16:33	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	111 %	06/29/	22	06/29/22 16:33	3	
Surrogate: Toluene-d8		75-120	102 %	06/29/	22	06/29/22 16:33	3	
Surrogate: 4-Bromofluorobenzene		75-120	95 %	06/29/	'22	06/29/22 16:33	3	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Bright

1500 Caton Center Dr Suite G

Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-19

2062710-09 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date: 0	0/24/22				
			Reporting	Detection				
Analyte	Result N	lotes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prep	ared by GCMS-	WATER-VOLA	TILES				
Acetone	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:57	LL
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/29/22	06/29/22 16:57	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Benzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Bromobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Bromoform	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Bromomethane	ND	ug/L	5.0	5.0	1	06/29/22	06/29/22 16:57	LL
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/29/22	06/29/22 16:57	LL
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:57	LL
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Chloroethane	ND	ug/L	5.0	5.0	1	06/29/22	06/29/22 16:57	LL
Chloroform	2.3	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Chloromethane	ND	ug/L	5.0	5.0	1	06/29/22	06/29/22 16:57	LL
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Dibromomethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-19

2062710-09 (Nonpotable Water) Sample Date: 06/24/22

			Sample Date: 0	0/24/22				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATE	R-VOLATILES (continued)				
cis-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:57	LL
(Sopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:57	LL
Methylene chloride	ND	ug/L	10.0	10.0	1	06/29/22	06/29/22 16:57	LL
Naphthalene	ND	ug/L	2.0	2.0	1	06/29/22	06/29/22 16:57	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Styrene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Tetrachloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Toluene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Trichloroethene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willester

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-19

2062710-09 (Nonpotable Water) Sample Date: 06/24/22

			-					
		-	Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WA	ΓER-VOLATILES	(continued)				
1,2,4-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
1,3,5-Trimethylbenzene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Vinyl chloride	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
o-Xylene	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
m- & p-Xylenes	ND	ug/L	2.0	1.0	1	06/29/22	06/29/22 16:57	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	116 %	06/29/2	?2	06/29/22 16:57	7	
Surrogate: Toluene-d8		75-120	103 %	06/29/2	22	06/29/22 16:57	7	
Surrogate: 4-Bromofluorobenzene		75-120	94 %	06/29/2	?2	06/29/22 16:57	7	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/05/22 17:48

Project: FAIRLINGTON CLEANERS

Project Number: 47:1507-D Project Manager: Josh Cinnamon

Notes and Definitions

J Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).

RE Sample reanalyses are done at the laboratory's discretion as a mechanism to improve data quality. Any client requested reanalysis will be identified

with a sample qualifier.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%-Solids Percent Solids is a supportive test and as such does not require accredidation

If this report contains any samples analyzed for gasoline range organics (GRO) by EPA Method 8015C and no trip blank was shipped, stored, and received with the sample(s) as required by Section 3.1 of the EPA Method, the sample analysis contained in this report cannot exclude the possibility that any reportable GRO measurement was due to environmental contamination of the sample during shipping or storage.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MINISTER

Company Name:	Project Manager:	Ana	Analysis Requested	CHAIN-OF-CUSTODY RECORD	TODY RECORD
もくく	Josh Chramon			Maryland Spectral Services. Inc.	al Services, Inc.
Project Name:	Project ID: 47:15A7_D			1500 Caton Center Drive, Suite G	er Drive, Suite G
Fairlington	47:96			Baltimore, MD 21227 410-247-7600 • Fax 410-247-7602	AD 21227 ax 410-247-7602
Sampler(s):	P.O. Number:				mectral.com
Jash Cinamon				Matrix Codes: NW (nonpotable water) PW (notable water)	e water)
Field Sample ID	Date Ting Water Soil	57°N		Preservative: 1+ 1 HCL, H ₂ SO ₄ , Methanol, Na ₂ S ₂ O ₃ , NaHCO ₃ Blank. Field Blank	esidual . QC Trip d Blank
MU-7R	3	X		(1) HCL	2062710-01
Mu- 15	5 X 02:21 1/h1/9	× .		[4] HCL	-02
12-C1	7 × 21:41 (21/2/9	X		77 170	-163
Mu-17	5 × 1 × 25:8 2462/9	. ×		(4) hc	±0-
7.73	5 × 35:41 12/12/9	、人		(+) HCL	-65 S
12ml (3		メ		141 466	20.0
N-12	8/24/22 (0:30 X	<u>ا</u>		추	5
1 - Wy	5/24/22 U:08 × 3	*		18 HG	20-
MW-19	E X 02:21 72/12/19	X		17 Hcr	60-
Annual Agentia Company of the Compan					in the second se
Relinquished by: (Signature)	Date/Time Received by: (Signature)	(e	Relinquished by: (Signature)	Date/Time Rec	Received by: (<i>Signature)</i>
(Printed)	4:20 (Printed)	-	(Printed)	.d.	(Printed)
by: (Signature)	Date/Time Rockyon My Labi: (5) and		15	Lab Use:	
(Printed)	(Printed)	nd Horn	. X .		ri- apte
Delivery Method: Special Ins	Special Instructions/QC Requirements & Com	Comments:	Rush (2 day)	1 등	- Address - Addr
Courier Client			Next Day Other: Specific Due Date:	☐ Return to Client ▼ Disposal by lab	
FedEX				□ Archive for de	days
	A Company of the Comp				MSS-F001-03/13

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

06 July 2022

Josh Cinnamon ECS-Chantilly 14026 Thunderbolt Place, Suite 100 Chantilly, VA 20151

RE: Fairlington

Enclosed are the results of analyses for samples received by the laboratory on 06/28/22 15:40.

Maryland Spectral Services, Inc. is a TNI 2009 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2009 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2009 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Will Brewington

Who Beigh

President

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

rroject:	rairington
Project Number:	47:1507-D
Project Manager:	Josh Cinnamon

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1		2062811-01	Nonpotable Water	06/27/22 14:01	06/28/22 15:40
MW-6		2062811-02	Nonpotable Water	06/27/22 09:50	06/28/22 15:40
MW-8		2062811-03	Nonpotable Water	06/27/22 09:10	06/28/22 15:40
MW-7		2062811-04	Nonpotable Water	06/27/22 10:41	06/28/22 15:40

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willsburgen

Project Number: 47:1507-D

Project Manager: Josh Cinnamon

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

MW-1 2062811-01 (Nonpotable Water)

		200	Sample Date: 0					
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Pre	pared by GCMS-	WATER-VOLA	TILES				
Acetone	ND	ug/L	10.0	10.0	1	06/30/22	06/30/22 21:52	LL
tert-Amyl alcohol (TAA)	ND	ug/L	20.0	20.0	1	06/30/22	06/30/22 21:52	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Benzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Bromobenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Bromochloromethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Bromodichloromethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Bromoform	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Bromomethane	ND	ug/L	5.0	5.0	1	06/30/22	06/30/22 21:52	LL
tert-Butanol (TBA)	ND	ug/L	15.0	15.0	1	06/30/22	06/30/22 21:52	LL
2-Butanone (MEK)	ND	ug/L	10.0	10.0	1	06/30/22	06/30/22 21:52	LL
n-Butylbenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
sec-Butylbenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
ert-Butylbenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Carbon disulfide	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Carbon tetrachloride	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Chlorobenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Chloroethane	ND	ug/L	5.0	5.0	1	06/30/22	06/30/22 21:52	LL
Chloroform	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Chloromethane	ND	ug/L	5.0	5.0	1	06/30/22	06/30/22 21:52	LL
2-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
4-Chlorotoluene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Dibromochloromethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Dibromomethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
,2-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
,3-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
,4-Dichlorobenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Dichlorodifluoromethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,1-Dichloroethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,2-Dichloroethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,1-Dichloroethene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millebrugher

Will Brewington, President

Project Number: 47:1507-D

Project Manager: Josh Cinnamon

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

MW-1 2062811-01 (Nonpotable Water)

		200	Sample Date: 0	,				
			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepar	ed by GCMS-WATI	ER-VOLATILES (continued)				
cis-1,2-Dichloroethene	45.4	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
trans-1,2-Dichloroethene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Dichlorofluoromethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,3-Dichloropropane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
2,2-Dichloropropane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,1-Dichloropropene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
cis-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
trans-1,3-Dichloropropene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Diisopropyl ether (DIPE)	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Ethylbenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Hexachlorobutadiene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
2-Hexanone	ND	ug/L	10.0	10.0	1	06/30/22	06/30/22 21:52	LL
Isopropylbenzene (Cumene)	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
4-Isopropyltoluene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
4-Methyl-2-pentanone	ND	ug/L	10.0	10.0	1	06/30/22	06/30/22 21:52	LL
Methylene chloride	ND	ug/L	10.0	10.0	1	06/30/22	06/30/22 21:52	LL
Naphthalene	ND	ug/L	2.0	2.0	1	06/30/22	06/30/22 21:52	LL
n-Propylbenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Styrene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Tetrachloroethene	94.1	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Toluene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,1,1-Trichloroethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,1,2-Trichloroethane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Trichloroethene	4.6	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,2,3-Trichloropropane	ND	ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Milleburgher

Will Brewington, President

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

Project: FairlingtonProject Number: 47:1507-D
Project Manager: Josh Cinnamon

MW-1

2062811-01 (Nonpotable Water) Sample Date: 06/27/22

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/N	MS) Prepar	ed by GCMS	S-WATE	R-VOLATILES (co	ntinued)				
1,2,4-Trimethylbenzene	ND		ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
1,3,5-Trimethylbenzene	ND		ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Vinyl chloride	ND		ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
o-Xylene	ND		ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
m- & p-Xylenes	ND		ug/L	2.0	1.0	1	06/30/22	06/30/22 21:52	LL
Surrogate: 1,2-Dichloroethane-d4	·	70-	130	112 %	06/30/22		06/30/22 21:52		
Surrogate: Toluene-d8		75-	120	105 %	06/30/22		06/30/22 21:52		
Surrogate: 4-Bromofluorobenzene		75-	120	91 %	06/30/22		06/30/22 21:52		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millebengten

Project Number: 47:1507-D

Project Manager: Josh Cinnamon

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

MW-6

2062811-02RE1 (Nonpotable Water) Sample Date: 06/27/22

			Sample Date: 0	6/27/22				
			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B	(GC/MS) Prepared	by GCMS-	WATER-VOLA	TILES				
Acetone	ND	ug/L	40.0	40.0	4	07/01/22	07/01/22 19:57	LL
tert-Amyl alcohol (TAA)	ND	ug/L	80.0	80.0	4	07/01/22	07/01/22 19:57	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Benzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Bromobenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Bromochloromethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Bromodichloromethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Bromoform	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Bromomethane	ND	ug/L	20.0	20.0	4	07/01/22	07/01/22 19:57	LL
tert-Butanol (TBA)	ND	ug/L	60.0	60.0	4	07/01/22	07/01/22 19:57	LL
2-Butanone (MEK)	ND	ug/L	40.0	40.0	4	07/01/22	07/01/22 19:57	LL
n-Butylbenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
sec-Butylbenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
tert-Butylbenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Carbon disulfide	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Carbon tetrachloride	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Chlorobenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Chloroethane	ND	ug/L	20.0	20.0	4	07/01/22	07/01/22 19:57	LL
Chloroform	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Chloromethane	ND	ug/L	20.0	20.0	4	07/01/22	07/01/22 19:57	LL
2-Chlorotoluene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
4-Chlorotoluene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Dibromochloromethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,2-Dibromo-3-chloropropane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,2-Dibromoethane (EDB)	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Dibromomethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,2-Dichlorobenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,3-Dichlorobenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,4-Dichlorobenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Dichlorodifluoromethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,1-Dichloroethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,2-Dichloroethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,1-Dichloroethene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:1507-D

Project Manager: Josh Cinnamon

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

MW-6

2062811-02RE1 (Nonpotable Water) Sample Date: 06/27/22

			Sample Date: 0	6/27/22				
			Reporting	Detection				
Analyte	Result N	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepared	by GCMS-WATE	R-VOLATILES (c	continued)				
cis-1,2-Dichloroethene	99.8	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
trans-1,2-Dichloroethene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Dichlorofluoromethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,2-Dichloropropane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,3-Dichloropropane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
2,2-Dichloropropane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,1-Dichloropropene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
cis-1,3-Dichloropropene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
rans-1,3-Dichloropropene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Diisopropyl ether (DIPE)	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Ethylbenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Iexachlorobutadiene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
-Hexanone	ND	ug/L	40.0	40.0	4	07/01/22	07/01/22 19:57	LL
sopropylbenzene (Cumene)	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
-Isopropyltoluene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
l-Methyl-2-pentanone	ND	ug/L	40.0	40.0	4	07/01/22	07/01/22 19:57	LL
Methylene chloride	ND	ug/L	40.0	40.0	4	07/01/22	07/01/22 19:57	LL
Naphthalene	ND	ug/L	8.0	8.0	4	07/01/22	07/01/22 19:57	LL
n-Propylbenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Styrene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,1,1,2-Tetrachloroethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
,1,2,2-Tetrachloroethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Tetrachloroethene	417	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Toluene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
,2,3-Trichlorobenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
,2,4-Trichlorobenzene	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
,1,1-Trichloroethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
,1,2-Trichloroethane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Frichloroethene	14.0	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,2,3-Trichloropropane	ND	ug/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

Project: FairlingtonProject Number: 47:1507-D
Project Manager: Josh Cinnamon

MW-6

2062811-02RE1 (Nonpotable Water) Sample Date: 06/27/22

			-	•					
			R	Reporting	Detection				
Analyte	Result	Notes U	nits Lir	nit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-V	VATER-VO	LATILES ((continued)				
1,2,4-Trimethylbenzene	ND	uş	g/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
1,3,5-Trimethylbenzene	ND	ug	g/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Vinyl chloride	ND	ug	g/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
o-Xylene	ND	uş	g/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
m- & p-Xylenes	ND	uį	g/L	8.0	4.0	4	07/01/22	07/01/22 19:57	LL
Surrogate: 1,2-Dichloroethane-d4		70-130		113 %	07/01/2	?2	07/01/22 19:57		
Surrogate: Toluene-d8		75-120	i	106 %	07/01/2	22	07/01/22 19:57		
Surrogate: 4-Bromofluorobenzene		75-120		93 %	07/01/2	?2	07/01/22 19:57		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:1507-D

Project Manager: Josh Cinnamon

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

MW-8

2062811-03RE1 (Nonpotable Water) Sample Date: 06/27/22

			Sample Date: 0	6/27/22				
Analyte	Result N	Notes Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/MS) Prep	ared by GCMS-	WATER-VOLAT	FILES				
Acetone	ND	ug/L	50.0	50.0	5	07/01/22	07/01/22 20:21	LL
tert-Amyl alcohol (TAA)	ND	ug/L	100	100	5	07/01/22	07/01/22 20:21	LL
tert-Amyl methyl ether (TAME)	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Benzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Bromobenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Bromochloromethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Bromodichloromethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Bromoform	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Bromomethane	ND	ug/L	25.0	25.0	5	07/01/22	07/01/22 20:21	LL
tert-Butanol (TBA)	ND	ug/L	75.0	75.0	5	07/01/22	07/01/22 20:21	LL
2-Butanone (MEK)	ND	ug/L	50.0	50.0	5	07/01/22	07/01/22 20:21	LL
n-Butylbenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
ec-Butylbenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
ert-Butylbenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Carbon disulfide	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Carbon tetrachloride	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Chlorobenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Chloroethane	ND	ug/L	25.0	25.0	5	07/01/22	07/01/22 20:21	LL
Chloroform	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Chloromethane	ND	ug/L	25.0	25.0	5	07/01/22	07/01/22 20:21	LL
2-Chlorotoluene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
1-Chlorotoluene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Dibromochloromethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
1,2-Dibromo-3-chloropropane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,2-Dibromoethane (EDB)	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Dibromomethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,2-Dichlorobenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,3-Dichlorobenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,4-Dichlorobenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Dichlorodifluoromethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,1-Dichloroethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,2-Dichloroethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
.1-Dichloroethene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Number: 47:1507-D

Project Manager: Josh Cinnamon

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

MW-8

2062811-03RE1 (Nonpotable Water) Sample Date: 06/27/22

			Sample Date: 0	5/27/22				
			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepared by GO	CMS-WATE	R-VOLATILES (c	ontinued)				
cis-1,2-Dichloroethene	23.9	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
rans-1,2-Dichloroethene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Dichlorofluoromethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,2-Dichloropropane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,3-Dichloropropane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
2,2-Dichloropropane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,1-Dichloropropene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
sis-1,3-Dichloropropene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
rans-1,3-Dichloropropene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Diisopropyl ether (DIPE)	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Ethylbenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Iexachlorobutadiene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
-Hexanone	ND	ug/L	50.0	50.0	5	07/01/22	07/01/22 20:21	LL
sopropylbenzene (Cumene)	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
-Isopropyltoluene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
-Methyl-2-pentanone	ND	ug/L	50.0	50.0	5	07/01/22	07/01/22 20:21	LL
Methylene chloride	ND	ug/L	50.0	50.0	5	07/01/22	07/01/22 20:21	LL
Naphthalene	ND	ug/L	10.0	10.0	10.0 5		07/01/22 20:21	LL
n-Propylbenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Styrene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,1,1,2-Tetrachloroethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,1,2,2-Tetrachloroethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Tetrachloroethene	438	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Coluene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,2,3-Trichlorobenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,2,4-Trichlorobenzene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,1,1-Trichloroethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,1,2-Trichloroethane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Trichloroethene	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Frichlorofluoromethane (Freon 11)	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
,2,3-Trichloropropane	ND	ug/L	10.0	5.0	5	07/01/22	07/01/22 20:21	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

Project Number: 47:1507-D Project Manager: Josh Cinnamon

MW-8

2062811-03RE1 (Nonpotable Water) Sample Date: 06/27/22

			-					
			Reporting	Detection				
Analyte	Result	Result Notes Units		Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (G	C/MS) Prepar	ed by GCMS-WA	TER-VOLATILES	S (continued)				
1,2,4-Trimethylbenzene	ND	ug/I	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
1,3,5-Trimethylbenzene	ND	ug/I	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Vinyl chloride	ND	ug/I	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
o-Xylene	ND	ug/I	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
m- & p-Xylenes	ND	ug/I	10.0	5.0	5	07/01/22	07/01/22 20:21	LL
Surrogate: 1,2-Dichloroethane-d4		70-130	112 %	07/01/	22	07/01/22 20:21	1	
Surrogate: Toluene-d8		75-120	105 %	07/01/	22	07/01/22 20:21	I	
Surrogate: 4-Bromofluorobenzene		75-120	93 %	07/01/	22	07/01/22 20:21	I	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millebengten

Project Number: 47:1507-D

Project Manager: Josh Cinnamon

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

MW-7 2062811-04RE1 (Nonpotable Water) Sample Date: 06/27/22

Reporting Detection												
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Volatile Organics by EPA 8260B	(GC/MS) Pı	epared b	v GCMS-	WATER-VOLAT	ΓILES			<u> </u>				
Acetone	ND		ug/L	20.0	20.0	2	07/05/22	07/05/22 17:06	LL			
tert-Amyl alcohol (TAA)	ND		ug/L	40.0	40.0	2	07/05/22	07/05/22 17:06	LL			
tert-Amyl methyl ether (TAME)	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Benzene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Bromobenzene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Bromochloromethane	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Bromodichloromethane	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Bromoform	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Bromomethane	ND		ug/L	10.0	10.0	2	07/05/22	07/05/22 17:06	LL			
tert-Butanol (TBA)	ND		ug/L	30.0	30.0	2	07/05/22	07/05/22 17:06	LL			
2-Butanone (MEK)	ND		ug/L	20.0	20.0	2	07/05/22	07/05/22 17:06	LL			
n-Butylbenzene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
sec-Butylbenzene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
tert-Butylbenzene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Carbon disulfide	2.0	J	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Carbon tetrachloride	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Chlorobenzene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Chloroethane	ND		ug/L	10.0	10.0	2	07/05/22	07/05/22 17:06	LL			
Chloroform	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Chloromethane	ND		ug/L	10.0	10.0	2	07/05/22	07/05/22 17:06	LL			
2-Chlorotoluene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
4-Chlorotoluene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Dibromochloromethane	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
1,2-Dibromo-3-chloropropane	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
1,2-Dibromoethane (EDB)	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Dibromomethane	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
1,2-Dichlorobenzene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
1,3-Dichlorobenzene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
1,4-Dichlorobenzene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
Dichlorodifluoromethane	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
1,1-Dichloroethane	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
1,2-Dichloroethane	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
1,1-Dichloroethene	ND		ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL			
•			-									

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willessey

Project Number: 47:1507-D

Project Manager: Josh Cinnamon

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

MW-7

2062811-04RE1 (Nonpotable Water) Sample Date: 06/27/22

			Sample Date: 0	6/2//22				
			Reporting	Detection				
Analyte	Result 1	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA 8260B (GC/	MS) Prepared	by GCMS-WATE	R-VOLATILES (c	continued)				
cis-1,2-Dichloroethene	59.6	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
trans-1,2-Dichloroethene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Dichlorofluoromethane	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
1,2-Dichloropropane	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
1,3-Dichloropropane	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
2,2-Dichloropropane	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
1,1-Dichloropropene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
cis-1,3-Dichloropropene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
rans-1,3-Dichloropropene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Diisopropyl ether (DIPE)	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Ethyl tert-butyl ether (ETBE)	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Ethylbenzene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Hexachlorobutadiene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
2-Hexanone	ND	ug/L	20.0	20.0	2	07/05/22	07/05/22 17:06	LL
sopropylbenzene (Cumene)	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
-Isopropyltoluene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Methyl tert-butyl ether (MTBE)	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
l-Methyl-2-pentanone	ND	ug/L	20.0	20.0	2	07/05/22	07/05/22 17:06	LL
Methylene chloride	ND	ug/L	20.0	20.0	2	07/05/22	07/05/22 17:06	LL
Naphthalene	ND	ug/L	4.0	4.0	2	07/05/22	07/05/22 17:06	LL
n-Propylbenzene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Styrene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
,1,1,2-Tetrachloroethane	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
,1,2,2-Tetrachloroethane	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Tetrachloroethene	198	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Toluene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
,2,3-Trichlorobenzene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
,2,4-Trichlorobenzene	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
,1,1-Trichloroethane	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
,1,2-Trichloroethane	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Frichloroethene	11.1	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
Trichlorofluoromethane (Freon 11)	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL
,2,3-Trichloropropane	ND	ug/L	4.0	2.0	2	07/05/22	07/05/22 17:06	LL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

Project: FairlingtonProject Number: 47:1507-D
Project Manager: Josh Cinnamon

MW-7

2062811-04RE1 (Nonpotable Water) Sample Date: 06/27/22

Analyte	Result	Notes Uni	Reporting	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst							
				. ,	Dilution	Frepared	Allalyzed	Allalyst							
volatile Organics by EPA 8260B (GC	olatile Organics by EPA 8260B (GC/MS) Prepared by GCMS-WATER-VOLATILES (continued)														
1,2,4-Trimethylbenzene	ND	ug/	4.0	2.0	2	07/05/22	07/05/22 17:06	LL							
1,3,5-Trimethylbenzene	ND	ug/	4.0	2.0	2	07/05/22	07/05/22 17:06	LL							
Vinyl chloride	6.0	ug/	4.0	2.0	2	07/05/22	07/05/22 17:06	LL							
o-Xylene	ND	ug/	4.0	2.0	2	07/05/22	07/05/22 17:06	LL							
m- & p-Xylenes	ND	ug/	4.0	2.0	2	07/05/22	07/05/22 17:06	LL							
Surrogate: 1,2-Dichloroethane-d4		70-130	110 %	07/05	/22	07/05/22 17:0	6								
Surrogate: Toluene-d8		75-120	105 %	07/05	/22	07/05/22 17:0	6								
Surrogate: 4-Bromofluorobenzene		75-120	93 %	07/05	/22	07/05/22 17:0	6								

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millesente

Project Number: 47:1507-D

Project Manager: Josh Cinnamon

Analytical Results

enelac :

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 07/06/22 14:10

Notes and Definitions

J Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered

an estimate (CLP E-flag).

RE Sample reanalyses are done at the laboratory's discretion as a mechanism to improve data quality. Any client requested reanalysis will be identified

with a sample qualifier.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%-Solids Percent Solids is a supportive test and as such does not require accredidation

If this report contains any samples analyzed for gasoline range organics (GRO) by EPA Method 8015C and no trip blank was shipped, stored, and received with the sample(s) as required by Section 3.1 of the EPA Method, the sample analysis contained in this report cannot exclude the possibility that any reportable GRO measurement was due to environmental contamination of the sample during shipping or storage.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Company Name:		Managei					Analysis Requested								CHAIN-OF-CUSTODY RECORD									
ECS Mid-Atlantic Project Name: Fairlington Sampler(s): Morgan Wauter	Tosh Cinnamon Project ID: 47:1507-D P.O. Number:					47:1507-D				the designation of the second	And the state of t				- Links and resident			Matrix Code	1500 10–24 la es: NW	Caton Baltimo 7–7600 abman@ ' (nonpo	pectral Service Center Drive ore, MD 212 D• Fax 410- Omdspectral. Otable water	e, Sui 227 -247 -com	ite G ~7602	
Field Sample ID	Date	Time	Water	Soil	Other	No. of Conta	VOC		PARTITION OF THE BILL							PW (potable Preserval 1+ 1 HCL, Methan Na ₂ S ₂ O ₃ , N	tive: H ₂ SO ₄ ,	Field p Chlo Req	oH, Residual orine, QC uest, Trip Field Blank		MSS Lab ID			
MW-1	6/2HZ	11101	1				X													Z	062811-	01		
MW-1 MW-1 MW-1	6/27/22	14:01	X				X																	
MW-I	6/27/21	14:01	X				X																	
																						A Company of the Comp		
											·													
										\top		1		 										
Retinquished by: (Signature) Mywyddoddddddddddddddddddddddddddddddddd	Date/T 6/27	-122	Receiv		L : (Sigi	l nature,	,	1	I		L nquish inted)	ed by	: (Sig	nalur	'e)		Date/Tim	1 9e	Received by: (L(Signa	ture)			
Horgan Watter 15:45 Relinquistled by: (Signature) (Printed) Date/Time Received by Lab: (Printed) (Printed) 15:40 (Printed)						_	Le			4 da	mal (ıy ıy				d Re □ Re	: eceived	°c							
Delivery Method: Special Ins Courier Client UPS FedEx USPS Other:	ecial Instructions/QC Requirements & Co							nents: □ 3 day □ Rush (2 da □ Next Day □ Other: □ Specific Du							□ Preservation Appropriate Sample Disposal: □ Return to Client □ Disposal by lab □ Archive for days									

Page 16 of 17

Company Name:	Project	Manage		[Ţ	,	Ana	lvsis	 Reque	ested			CHAIN-OF-CUSTODY RECORD								
ECS - Mid - Atlanti	C JUSh	1 Civ	ma	mo	מפ		-			,	т <u>.</u>			T		Mond	Innd Sn	ectral Servic	oc Inc		
Project Name;	Project	ID:														•	,	Center Drive			
Fairlington	47:	1507	L —	D					1									re, MD 212			
Fairlington Sampler(s):		P.O. Number:													410			• Fax 410- omdspectral		602	j
Morgan watter						ntainers									Matrix Codes: PW (potable v	NW	(nonpo				
Field Sample ID	Date	Time	Water	Soil	Other	No. of Cor	VOC'S								Preservativ 1+ 1 HCL, H ₂ Methanol, Na ₂ S ₂ O ₃ , NaH	SO ₄ ,	Chlo Requ	H, Residual orine, QC uest, Trip Field Blank	M	SS Lab ID	
MW-6	COLLHE	9:50	X				X			1									20	628/1-	0.2
MW-6	G127122	9:50	X				X														
MW-60	6/2422	9:50	X				X												•		
MW-8	Ce127127		X				X												_	103	
MM-8		19110	X				X														
MW-8		9:16					K												`		
MW-7-	6/27/12	·					X												-	, D 4	
MW-7		20:21					X														
UW-7	***************************************	40:4					X		***************************************										V		
							X														
Relinquished by: (Signature)	O / 27	ime -{27	Receiv	ed by	r. (Sig	nature	;)			Relin	nquishe	d by: <i>(S</i> .	ignatur	re)	Dal	te/Tim	e	Received by: (Signature	?)	<u></u>
Megan wouter	15:		(Print	'ed)						(Pri	inted)										
Relinquisited by: (Signature)	Date/7 6-28	ŀ	Receiv	ll	/ Lab:	(Signa	ature)			Tui		und Ti			Lab Use			4.2			
(Printed)	l l		i Pimi	led)	<u> </u>		F	05,	Jer		Norm 5 day 4 day 3 day	/	lay)		□ Rece	eived eived	on Ice same o	•	•		
Delivery Method: Courier Client UPS FedEx USPS	15:40 Lovi						nents	S.:			Rush Next Othe	ı (2 da Day		te:	Sample Disposal: Return to Client Disposal by lab Archive for days						
n Other:										1											

Page 17 of 17